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Early detection and diagnosis of incipient induction machine faults increases machinery

availability, reduces consequential damage, and improves operational efficiency. However, fault

detection using analytical methods is not always possible because it requires perfect knowledge

of a process model. This paper proposes a neural network based expert system for diagnosing

problems with induction motors using vibration analysis. The short-time Fourier transform

(STFT) is used to process the quasi-steady vibration signals, and the neural network is trained

and tested using the vibration spectra. The efficiency of the developed neural network expert

system is evaluated. The results show that a neural network expert system can be developed

based on vibration measurements acquired on-line from the machine.
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1. Introduction

Induction machines make up the majority of
industrial prime movers and are popular for their
reliability and simplicity of construction. How-
ever, many electrical machine components are sus-
ceptible to failure. In general, fault detection in
induction motors has concentrated on sensing
failures in one of the three major components : the
stator, rotor, and bearings (Tavner and Penman,
1987). Long-term disruption of the operation of
industrial plants causes large economic losses.
Therefore, for both safety and economic consi-
derations, it is necessary to monitor the behavior
of motors working in critical production processes.
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Detection of incipient faults allows preventative
maintenance to be scheduled for machines that
might not ordinarily be due for service and can
prevent an extended period of downtime caused
by extensive motor failure. For this reason, rapid
fault detection and location are very significant in
industrial practice (Eisenmann and Eisenmann,
1997 ; Vas, 1999).

Practical condition monitoring techniques for
three-phase induction motors generally involve
some combination of mechanical and electrical
monitoring. Although electrical sensing with an
emphasis on analyzing the motor stator current is
used widely, vibration-based condition monitor-
ing has attracted the attention of many researchers
working on induction machines and has gained
industrial acceptance, as vibration analysis tech-
niques are quite effective in assessing the health
of a machine (Riley et al., 1998 ; Ob et al., 2004).
It has been claimed that vibration monitoring is
the most reliable method of assessing the overall
health of a rotor system (Lagan, 1999).

Fault detection systems use different procedures
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in the diagnostic process, starting from heuristic
knowledge, and include mathematical models and
artificial intelligence methods (Oh et al., 2004).
Motor operations can be diagnosed using differ-
ent elements of the knowledge base, including an-
alytical methods, support vector machines (Yang
et al., 2004), expert systems (Yoon et al., 1995),
and neural networks or fuzzy logic reasoning.
Fault detection using analytical methods is not
always possible because it requires perfect knowl-
edge of a process model. With an insufficient or
imprecise model, false alarms can occur due to
errors estimating the state variables or process
parameters of the system (Vas, 1993, 1999). Hu-
man knowledge and experience are much easier to
apply ; automatic realization is difficult.

The recent success of neural networks for mod-
eling highly complex systems implies their poten-
tial in the development of an automatic expert
system for diagnosing induction machines (Choi,
1996 ; Atiya and Palos, 2000). A neural network
can represent any nonlinear system without knowl-
edge of its actual structure and can provide re-
sults quickly during the recall phase. This paper
presents a neural network based expert system that
uses vibration sensors to diagnose problems with
induction motors. The short-time Fourier trans-
form (STFT) is used to process the quasi-steady
vibration signals, and the neural network is train-
ed and tested using the vibration spectra. The effec-
tiveness of the developed neural network expert
system was evaluated. The results demonstrate that
it is a practical on-line fault detection system.

Following this introduction, Section 2 briefly
describes the basic principles of neural network
applications in fault detection. Section 3 presents
the detailed procedures used to develop a neu-
ral network based expert system and Section 4
presents the experimental results obtained when
an induction motor was tested. Finally, Section 5
presents a summary and the conclusions drawn
from this study.

2. Neural Network Applications
in a Fault Detection System

During the operation of induction motors, dif-

ferent faults can arise in the electrical and me-
chanical parts of the stator and rotor, as well as in
the loading machine and coupled devices. The
possibility of detecting incipient faults in electri-
cal, magnetic, and mechanical motor parts has re-
cently become one of the most important prob-
lems in induction motor research (Eisenmann and
Eisenmann, 1997 ; Vas, 1999).

There are several methods for detecting, classi-
fying, and locating induction motor faults. An-
alytical methods use deterministic and stochastic
mathematical models for particular faults, heuris-
tic reasoning based on expert knowledge and ex-
perience, and new techniques such as artificial
intelligence, especially neural networks. Fault de-
tection systems based on mathematical models
usually require good knowledge of the physical
phenomena of the plant and lead to very compli-
cated software. The main principal of methods
based on mathematical models lies in fault deter-
mination based on a comparison of the mathe-
matical model and expert knowledge of the oper-
ation states of the plant. Heuristic reasoning re-
quires an expert presence to perform any diag-
nostic task. Therefore, these two methods are very
dependent on the adequacy of the mathematical
model, measurement errors, and expert knowl-
edge. Connecting knowledge based on analytical
mathematical models and heuristic knowledge,
which is realized in expert systems, enables signi-
ficantly greater diagnostic efficiency. However,
the need for a human expert is the main disad-
vantage of these methods. The shortage of skilled
personnel has prompted research into automated
on-site processing and the diagnosis of vibration
measurements (Harris, 1991).

The introduction of artificial intelligence methods,
especially the neural network approach, has eli-
minated these disadvantages. A neural network
can represent any nonlinear system without knowl-
edge of its actual structure. Intensive research has
recently examined the application of neural net-
works to motor system diagnosis (Tahk and Shin,
2002) ; they are used as neural fault detectors and
classifiers for electrical machines.

The strategy of a neural network based expert
system involves identifying fault conditions based
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Fig. 1 Neural network based expert system

on vibration analysis and incorporating neural
networks to model the status of fault conditions.
The proposed neural network based expert sys-
tem for monitoring technical plant involves de-
signing a neural classifier for the states of the
plant based on recorded and current measurement
data. Since the state of the plant can be treated as
a specific picture of the plant, characterized by a
set of input/output signals, the diagnosis prob-
lem involves recognizing and classifying patterns.
Neural network classifiers, with nonlinear feature
mapping using sigmoidal basis functions, can iden-
tify multiple faults in vibration signal analysis
(Chow, 1997). The main aim of such classifiers is
to allocate the state of the motor to a previously
determined fault category. Figure 1 is a schematic
diagram of the neural network based expert sys-
tem.

The data—acquisition system samples vibration
signals and changes the recognized motor pictures
into useful signals for conversion by a perform-
ance extractor, segmentation, and STFT process-
ing modules. The main task of the extractor is
filtering and scaling. In general, the measured
motor vibration signals are highly non-station-
ary. A quasi-steady signal can be obtained using
segmentation. Then, STFT is used to process the
quasi-steady signals by windowing the signal

using a shifted-window function (Mohanti, 1987).

The converted vibration spectra are treated as
specific motor pictures for the neural network
classifier to decide the status of the motor, as
vibration spectra provide a useful feature set for
machine diagnostics (Harris, 1991). The design of
a neural network classifier for an expert system is
connected to the choice of neural network and the
structure and determination of its weight coeffi-
cients in a suitable training procedure. The fol-
lowing section presents the design procedure for a
neural network based expert system for detecting

induction motor faults, and its training procedure.

3. Design Procedure for the Proposed
Expert System

3.1 Quasi-steady segmentation and spectra
conversion

Most features used in fault detection assume the
presence of a stationary signal from which fault
features are extracted, such as the mean, variance,
or spectral estimates (Kim and Parlos, 2003a).
However, the vibration signals of a motor are
highly non-stationary, and contain both transient
signals, resulting from start up conditions and
varying loads, and steady-state signals.

Therefore, to obtain high-performance motor
features that are not influenced by fast time-vary-
ing machine characteristics, the motor signature
must be extracted from non-stationary vibration
signals. In a recent paper (Kim and Parlos, 2003b),
the authors derived a segmentation algorithm that
could be applied to current measurements for the
stator. The idea underlying signal segmentation is
that for a signal to be considered stationary, it’s
fundamental and harmonics must remain constant
over time. Since transient signals result in changes
in the motor vibration signal harmonics, which
are significantly smaller than the fundamental, a
statistical method is used to process the vibration
signal in the time domain. The RMS values for
the vibration signals are calculated over the win-
dow defined by the STFT. If the RMS value at
successive windows does not vary, then the signal
is considered stationary. The equations are as
follows :

L Siye()) (1)

wi=1
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Fig. 2 Vibration spectrum in normal condition

where Vyms(7) is the RMS value of the vibration
signal in each window, Ny is the window size, 8
is a user—defined threshold, and # is the total
number of windows in the signal. The compari-
son is made throughout the signal. If this algo-
rithm does not result in the selection of quasi-
steady segments, then the threshold can be in-
creased.

The measured spectrum, shown in Fig. 2, has
tones up to 10 kHz. A reported theoretical analy-
sis applied to the motor under test suggests that
the faults considered give rise to additional mean-
ingful tones not higher than 1 kHz (Betta et al.,
2002). Therefore, to improve the computational
speed and reduce the network size, the quasi-
steady signal is filtered through the performance
extractor module.

3.2 Neural network classifier development

Due to the random nature of the vibration
signal, explicit fault classifiers cannot be develop-
ed using conventional methods. It is difficult to
establish an exact mathematical formulation that
describes the relationships between machine faults
and the vibration harmonics generated. Therefore,
a neural network classifier can be achieved more
efficiently, since a neural network is a nonlinear
empirical model that can capture the nonlinear
system dynamics and does not require knowledge
of specific system parameters (Gao and Ovaska,
2000) .

The application of neural network techniques
to modeling or classification problems generally
proceeds systematically. First, we start with a re-

duced classification problem, with each class re-
presenting a well-defined fault condition, and then
increase the number of classes as additional data
become available. Second, we indicate class mem-
bership using an associated output value for the
corresponding neural network classifier output,
and these outputs can be used to indicate the se-
verity of the presence of a condition, on a contin-
uous scale. In this study, the neural network
classifier was trained to distinguish between three
classes : normal, an air-gap eccentricity fault, and
a broken rotor bar fault.

3.2.1 Neural network classifier formulation

In this study, we use a multi-layer perceptron
neural network that undergoes supervised learn-
ing to classify motor conditions. The structure of
the neural network classifier is shown in Fig. 3;
it consists of an input layer, a hidden layer, and
an output layer. Each of the processing elements
of a neural network is governed by the following
equation :

Nu-
x[z,i]ZO‘[z,i]< ;;Z;”a)[za,ﬂ[z,i]x[z—hj]+b[z,z‘]) (3)
for 7=/, ---, Ny (the node index), and /=1, ---,
L (the layer index), where x(;,;; is the ;™ node
output of the /™ layer for sample #, Wy-1,51124] i
the weight, the adjustable parameter, connecting
the 7™ node of the (/—1)™ layer to the /™ node
of the /'™ layer, by, is the bias, which is also an
adjustable parameter, of the ;™ node in the /™
layer, and oy, (*) is the discriminatory function
of the ™ node in the /'™ layer.
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Fig. 3 Structure of neural network classifier

The relation between input and output in a
multi-layer neural network can be expressed using
general nonlinear input-output models, as fol-
lows :

W) =f(ulk); W) (4)

where W is a weight matrix that is determined
by the learning algorithm, and f represents the
nonlinear transformation of the input approxi-
mated by a neural network ; a hyperbolic tangent
function is used here. The input vector (k) is
defined as:

u(k)=[V(k), -, V(kn] (5)

where V (k;) is the magnitude of the vibration
spectrum for each window. The process that de-
fines the weights using the training data is refer-
red to as training the neural network.

3.2.2 Learning algorithms

Using the structure of Eq. (4), the neural net-
work model is trained using the Levenberg-Mar-
quardt (LM) algorithm. LM algorithm, which is
based on the Gauss-Newton method, can solve
the problems presented by the Steepest Descent
and Newton methods dynamically. In this train-
ing phase, the error function to be minimized is
given by,

where 7 is the number of outputs included in
training, and NP is the number of training sam-
ples. The LM algorithm is designed to approach
second-order training speed without having to

compute the Hessian matrix. When the perform-
ance function has the form of a sum of squares,
then the Hessian matrix can be approximated as,

H=]] (7
and the gradient can be computed as,
g=]"e (8)

where J is the Jacobian matrix that contains the
first derivatives of the network errors with re-
spect to the weights and biases, and ¢ is the net-
work error. Then, the processing element is up-
dated using,

Xe+1=Xp— []T]+ﬂ]] _1]T5 9)

When the scalar p is zero, this is simply New-
ton’s method, using the approximate Hessian
matrix. When g is large, it becomes a gradient
descent with a small step size. The detailed com-
putation of the gradients involved in the LM
learning algorithm can be found in many neural
network references, such as Norgaard et al. (2000) .

323
The vibration signals form a multivariate fea-

Model training and validation

ture space. The required number of training sam-
ples for a classifier generally increases exponen-
tially with the number of features, assuming un-
correlated data (Chow et al., 1996). The frequen-
cy domain of the vibration signal provides a
useful feature set for machine diagnostics. Most
defects are related to specific frequency domain
features (Harris, 1991 ; Taylor, 1994). For this
paper, vibration spectra ranging from 0-1kHz
were used as features for the neural network classi-
fier input, as shown in Fig. 4. The vibration sig-
nals were acquired continuously and converted.
The vibration spectra for the healthy condi-
tion, air-gap eccentricity condition, and broken
rotor bar condition are used for neural network
classifier training and validation. The vibration
spectrum after STFT processing is expressed as
V(fld).

the training set. The designed multi-layer neural

where 7 is the index of windows in

network is based on the multi-layer perceptron
structure shown in Fig. 3, and consists of one
hidden layer, one input layer, and one output
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Fig. 4 Vibration spectra for neural network classi-
fier input

layer, both with Ny nodes, which are equal to the
amplitude in the vibration spectrum. The classi-
fier structure of the neural network was decided
after various experiments, and the pruning meth-
od is also used.

Initially, in this study, the neural network clas-
sifier was developed for a 597-kW Allis Chalmers
(AC) machine with training data representing
several conditions, such as air-gap eccentricity
and a broken rotor bar. After developing this
baseline classifier, additional classes representing
different motor faults can be added when addi-
tional data become available. The training dataset
consists of 8,400 samples for estimation, and 1,200
samples for validation. The validation dataset is
used to determine the best time to stop predictor
training to prevent over training, and to select the
neural network structure. In testing the perform-
ance of the developed neural network classifier,
the classifier is evaluated in terms of its perform-
ance with test datasets.

4. Experimental Evaluation
of the System

4.1 Experimental settings and data acquisi-
tion

To test the effectiveness of a neural network

based expert system for detecting induction motor

faults, it is necessary to investigate its perform-

ance under actual operating conditions. An ex-

perimental system was set up to collect the data

Sizmal Data
Filter g Acqusition
humplfie System
Indlue tion Motor
MNewral Network Expert Sysiem
Feature
Space
Vibration
Spectrum
Analysic

Mot
States ’

Fig. 5 Schematic of the experiment system

needed for these experiments. To acquire the
necessary digital data, various anomalies were
introduced to a 3-¢, eight pole, 597 kW Allis
Chalmers motor, and motor faults were staged.

The staged incipient faults included several
mechanical faults, such as air-gap eccentricity
and broken rotor bars, which are the most com-
mon motor faults (Albrecht et al., 1986; IAS,
1985). The results of a few of these anomalies
and staged faults are presented here. The motor
was run from the mains power supply directly.
The motor was connected to dynamometers that
were used to load it. A simplified schematic of the
experimental system is shown in Fig. 5.

During the tests, accelerometers were placed
both horizontally and vertically on the motor
and used to acquire vibration signals. An IOTech
data-acquisition system was used to record the
vibration signals and the encoder speed signal
at a 40-kHz sampling frequency. The vibration
signals were filtered and down-sampled to 1,000
Hz for further processing. A wide range of case
studies was collected for the motor, including
healthy cases and cases with operational anoma-
lies.

4.2 Results and analysis of the experiment

In this study, the vibration measured from the
597 kW Allis Chalmers motor represented three
conditions : a healthy motor, an air-gap eccentri-
city, and a broken rotor bar. The first 10,000 sam-
ples for these three conditions are illustrated in
Figs. 6~8, respectively. Figure 9 shows the mag-
nitude of the RMS value for quasi-steady seg-
mentation, which shows that quasi-steady vibra-
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Table 1 Training and test data sets

Training Data Set (Healthy)

Test Data Set (Healthy)

Update Condition Samples Update Condition Samples
Yes Healthy 1200 No Healthy 800
Yes Air-gap eccentricity 1 1200 No Air-gap eccentricity 800
Yes Air-gap eccentricity 2 1200 No Broken rotor bar 800
Yes 1/2 Broken rotor bar 1200 No Multiple 800
Yes One Broken rotor bar 1200 No Multiple 800
Yes Two Broken rotor bars 1200 No Multiple 800
Yes Four Broken rotor bars 1200 No Multiple 800
No Multiple 1200 No Multiple 800

tion signals can be extracted from the start-up
condition efficiently with the proper threshold.
The training dataset used to develop the neural
network classifier was divided into two separate
datasets. The first dataset, containing 8,400 sam-
ples, was used for estimation, and the second set,
containing 1,200 samples, was used for validation.
Several additional datasets, each with 800 sam-
ples, were used to test the performance of the
developed neural network classifier. The training
and testing datasets used in the development of
the neural network classifier are presented in
Table 1.

Our neural network classifier has 15 hidden
nodes and 1 output node. The number of hidden
layer nodes was determined by trial and error.
The mean-squared error (MSE) of neural net-
works with different numbers of hidden layer
nodes after 400 iteration steps of training is com-
pared in Table 2. The simplicity of the neural
network is the main condition for the practical
realization of such a neural network classifier
using a digital signal processor. The training proce-
dure for a neural network classifier with zero
initial context node outputs using the LM algo-
rithm is shown in Fig. 10. The vibration spectra
were scaled in the range [—0.5, 0.5] to avoid
saturating the neural network nodes. To evaluate
the accuracy of the developed neural network
classifier, the maximum and mean model errors
were used. In addition, the normalized mean-
squared error (MSE) was also used. The test
dataset comprised different measurements than
those used in the training dataset. The perform-
ance evaluation for the test set is summarized in

Table 2 Accuracy of the neural network with dif-
ferent numbers of hidden layer nodes

Node
Number

MSE (%)]0.188(0.188(0.186|0.181(0.177|0.181{0.181

3 5 9 13 15 17 | 20

Table 3 Evaluation of neural network model accu-

racy
Max. Error | Mean Error
Test Set |MSE (%) (% (%
1 0.188 3.1 0.9
2 0.191 2.9 1.1
3 0.186 3.0 0.8
4 0.189 3.1 0.9

Table 3.

The motor condition is represented by the out-
put states of a neuron in the output layer of the
neural network classifier. For this expert system,
these outputs are :

(1) for a healthy motor ;
(2) for an air-gap eccentricity fault ; and
(3) for a broken rotor bar.

Air-gap eccentricity is one of the main causes
of induction motor failure, because eccentricities
place excessive stress on the motor and greatly
increase bearing wear. Here, two air-gap eccen-
tricity tests were performed using the 597 kW
motor. The first case involved moving the rotating
center at the end of the inboard shaft 25% up-
ward, and the second case involved moving the
rotating center at the end of the outboard shaft
20% downward and 10% to the right. Following
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Table 4 Test results for air-gap eccentricity faults

Healthy condition

Motor status 1 1 1 1 1 1 1 1 1 1
NN output 1.029 0.97 0.956 1.052  0.935 1.137 1.012 1.023 1.033  0.895
Rounding output 1 1 1 1 1 1 1 1 1 1
Air-gap eccentricity fault condition 1
Motor status 2 2 2 2 2 2 2 2 2 2
NN output 1.803  2.194 1.93 2.058  2.038 1.775  2.122 1.744 2.19 2.037
Rounding output 2 2 2 2 2 2 2 2 2 2
Air-gap eccentricity fault condition 2
Motor status 2 2 2 2 2 2 2 2 2 2
NN output 2.108  2.311 1.922  2.102 2105 2.034 2752 2.098 2.124 1.94
Rounding output 2 2 2 2 2 2 3 2 2 2

data collection, down-sampling and scaling was
performed. As the faults considered give rise to
additional meaningful tones not higher than 1
kHz, the acquired signal was filtered (1 kHz cut-
off) and down-sampled (decimation factor=4)
to improve computation. The vibration signals
were processed through the quasi-steady segmen-
tation stage, revealing the quasi-steady motor
operation signals. The test results of our expert
system for detecting air-gap eccentricity faults
are presented in Table 4. In this table, incorrect
responses by the expert system are shown in bold
numbers. The test results for both air-gap eccen-
tricity cases indicate that the expert system can
detect this type of fault almost without error.
Another major cause of motor problems is a
broken rotor bar, which can cause asymmetry of
the motor’s magnetic field and lead to catastro-
phic failure. The effects of a broken rotor bar are
very weak initially, and sensitive measurements

are required to detect the damage. In this study,
we tested four broken rotor bars of different se-
verities. The four cases were one half-broken bar,
one broken bar, two broken bars, and four bro-
ken bars. The measurements were further process-
ed, as in the case of air-gap eccentricities, and the
outputs of the neural network classifier were ob-
tained. The test results of the expert system that
was developed to detect broken rotor bar faults
are presented in Table 5. The results show that the
proposed expert system can effectively detect bro-
ken rotor bar faults of different levels of severity.
As the number of broken bars increases, the fault
condition becomes more severe, providing clearer
features in the vibration spectrum for the neural
network classifier, and making fault detection
more accurate.

The proposed system was tested using 38 cases
of staged fault data from the 597-kW Allis Chalmers
motor. The analyzed cases included different mo-
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Table 5 Test results for broken rotor bar faults
Healthy condition
Motor status 1 1 1 1 1 1 1 1 1 1
NN output 1.194 0974 1.173 1.206  0.953 0.926 0913 1.126 1.007 1.19
Rounding output 1 1 1 1 1 1 1 1 1 1
1/2 Broken rotor bar condition
Motor status 3 3 3 3 3 3 3 3 3 3
NN output 3.045 2.62 2.623 2.376 2.687 2762  2.603 3.067 2.955 2.723
Rounding output 3 3 3 2 3 3 3 3 3 3
One Broken rotor bar condition
Motor status 3 3 3 3 3 3 3 3 3 3
NN output 2.981 3.179 2.891 2.593 2.943 2.869 3.055 3.024  2.947 3.025
Rounding output 3 3 3 3 3 3 3 3 3 3
Two Broken rotor bars condition
Motor status 3 3 3 3 3 3 3 3 3 3
NN output 2.989 2.991 3.041 2.962 3 3.002 3.052 3.101 3.159 3.032
Rounding output 3 3 3 3 3 3 3 3 3 3
Four Broken rotor bars condition
Motor status 3 3 3 3 3 3 3 3 3 3
NN output 2.936 3.039 3.132 2.999 3.077 3.037 2.898 2.981 2.897 2.978
Rounding output 3 3 3 3 3 3 3 3 3 3

Table 6 Summary of analyzed staged fault experiments

Motor Condition Number of Cases| Accuracy Detailed Description
Healthy 12 98.86% Balanced Supply
Offset of 25% Up Inboard,
. .. Offset of 20% Down
Air-Gap E tricit 9 97.439
1rap Beeentrietty % 10% Right Outboard
and 25% Up Inborad.
Half-broken Bar
One Broken Bar
B B 752
roken Bars 17 97.75% Two Broken Bars
Four Broken Bars
Number of Analyzed Faults 38 98.02%

35 I T I T T
| ! 1 broken bar > broken bar
at | ! At -
I I |...—m-—- I | I
. 1sbroken bar 4 broken bar|
.| | ! | ! ! ! i
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Fig. 11
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Output of the neural network expert system under multiple conditions
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tor operating conditions with an eccentric air-
gap or broken rotor bars. Healthy motors were
also considered. The indicator of the expert sys-
tem under all of these test conditions is illustrat-
ed in Fig. 11; each condition was run for 500
seconds. Table 6 summarizes some of these test
cases used to analyze the performance of the pro-
posed system. Compared with other fault-detec-
tion methods (Taniguchi et al., 2000; Su and
Chong, 2005), our scheme has a simpler structure
and algorithm. In addition, it does not require
on-line adaptation of any parameters in the neu-
ral network. This feature makes it well suited for
time-critical applications.

5. Conclusions

This paper presents the development and test-
ing of a neural network based expert system for
diagnosing induction motor faults. The proposed
system uses a multi-layer perception neural net-
work that is trained using vibration spectra. The
investigation was based on the notion that a neu-
ral network can capture nonlinear system dynam-
ics and does not require knowledge of specific
system parameters. The experimental results show
that the neural network classifier can be used
effectively for recognizing mechanical motor faults
by appropriate measurements and interpretation
of STFT analysis of vibration spectra. Since
on-line frequency analysis can be carried out
using this method, it is practical to apply the
proposed method to monitoring motor conditions
in real time.
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